
User’s guide

Jérémie Gaidamour Pascal Hénon Yousef Saad

1 Overview

HIPS is a parallel solver for sparse linear (symmetric, unsymmetric, real or complex)
systems. HIPS can be used as a stand-alone program that reads a sparse linear system
from a file ; it also provides an interface to be called from any C, C++ or Fortran code.
HIPS is developped by Jérémie Gaidamour and Pascal Hénon in the INRIA team-
project “Scalapplix” in collaboration with Yousef Saad from the University of Min-
nesota.

2 Installation

2.1 Pre-requirements :

• C and Fortran compiler,

• an MPI-1 (Message Passing Interface) library,

• a BLAS (Basic Linear Algebra Subprograms) library,

• the latest SCOTCH 5.xx or METIS 4.0 library :

– SCOTCH : http://www.labri.fr/perso/pelegrin/scotch/
– METIS : http://glaros.dtc.umn.edu/gkhome/views/metis/

2.2 Installation procedure :

1. Install SCOTCH 5.xx or METIS 4.0.

http://www.labri.fr/perso/pelegrin/scotch/
http://glaros.dtc.umn.edu/gkhome/views/metis/

2.2 Installation procedure : 2

2. Decompress the HIPS archive, go in the HIPS directory and copy from
Makefile_In_Example/ a makefile.inc corresponding to our archi-
tecture on the root of the HIPS installation directory. For example; if you are
installing HIPS on a Linux system :

tar -xzf hips-*
cd hips-*
cp Makefile_Inc_Example/makefile.inc.linux ./makefile.inc

3. Edit the file makefile.inc which contains the compilation parameters :

• Comment out one of these lines to compile the complex or the real version of HIPS :

#COEFTYPE = -DTYPE_REAL
#COEFTYPE = -DTYPE_COMPLEX

On some architecture MPI has no complex type. In this case, you can compile HIPS
with COEFTYPE = -DTYPE_COMPLEX -DWITH_MPI_DOUBLE.

• If you are using METIS leave unchanged the line :

PARTITIONER =

Otherwise, set PARTITIONER = -DSCOTCH_PART to use SCOTCH.
You can give the installation path of the partitionner library using the variables
METIS_DIR or SCOTCH_DIR. Alternativly, you can directly set the library
path (LMETIS or LSCOTCH) and the include path (IMETIS or ISCOTCH).

• You can optionnaly define the integer sizes used in HIPS using the variable
INTSIZE. Leave this variable unreferenced to use default C type of your machine.
It is useful if :

– you want to use HIPS in a Fortran code,
– have 32 bits integers by default and encounter overflows (very large problems),
– if your own code or library define specifically integer sizes.

4. Set the compiler and linker options specific to your installation :

• Configure compilers and their flags (use for example COPTFLAGS and
FOPTFLAGS to set optimizations flags like -O3).

• Configure LBLAS variable to link to your BLAS library. For example, use :

LBLAS = -lblas

With the Intel Math Kernel Library (MKL), you will need something like :

-L/mkl/10.0.3.020/lib/em64t -lmkl_intel_lp64 \
-lmkl_sequential -lmkl_core -liomp5 -lpthread

If you are using a multithreaded BLAS library (ATLAS, MKL, GotoBLAS, . . .),
disable this feathure (see manual of your BLAS library).

• If your library path (LD_LIBRARY_PATH) are not properly set, you can add di-
rectory where are searched the libraries (variables LSCOTCH, LMETIS, LMPI and
LBLAS). For example :

3 How to run the hips test program 3

LBLAS = -L/path/to/libblas/ -lblas

• The search paths for header files can be controlled throught variables ISCOTCH,
IMETIS, IMPI and IBLAS. For example, the following line will add
/path/to/mpi/include/ to the include path (to find mpi.h) :

IMPI = -I/path/to/mpi/include/

5. Run make all to compile the library and the test programs. HIPS makefile are designed
to compile with the GNU make : on certain architectures you will have to use gmake
instead of make (MAKE = gmake).

3 How to run the hips test program

In TESTS/PARALLEL you should find an executable testHIPS.ex. The path
of the matrix you want to try as well as some parameters must be set in the file
Inputs which is in the same directory. Once you have set the parameters you want
to test in Inputs; you can run HIPS like in this example (mpich with 16 proces-
sors) : mpirun -np 16 ./testHIPS.ex <domsize> where <domsize>
is an integer that indicates which size of interior domain you would like to use. The
<domsize> parameter should be small enough to create at least one domain per pro-
cessor, otherwise the program will end with an error message. This parameter is op-
tional in the case you choose the “ITERATIVE” (full iterative) strategy in the Inputs
parameter file (see next subsection for details).

3.1 Input parameters of the test program

The test program testHIPS.ex read the input parameters in the file “Inputs”. Here is a
description of the Inputs file :

Example of an “Inputs” file for the hybrid method :

../MATRICES/bcsstk16.rsa #0# Matrix name and driver
2 #1# 0=unsymmetric pattern, 1=symmetric pattern, 2=symmetric matrix in RSA
0 #2# RHS file name (0=make a rhs (sol = [1]))
HYBRID #3# Method (HYBRID, ITERATIVE)
1e-7 #4# Relative residual norm
ALL #5# Fill-in : Strictly=0, Locally=ALL
100 #6# GMRES maximum iteration
100 #7# GMRES restart
0.00 #8# Numerical threshold in ILUT for interior domain
0.001 #9# Numerical threshold in ILUT for the interface
0.001 #10# Numerical threshold for coupling between the interior level and Schur
5 #11# Verbose level [0-4] (the higher the more it prints informations)

Important note for “HYBRID” method :

3.1 Input parameters of the test program 4

• you must set the parameter #8# to 0 (it means that an exact factorization is used
for the interior domain matrix);

• the domsize parameter of “testHIPS.ex” is a domain average size ; it should be
sufficiently small to ensure that at least one per processor can be created (the
program will stop if it is not the case).

Example of an “Inputs” file for the full ITERATIVE method :

../MATRICES/bcsstk16.rsa #0# Matrix name and driver
2 #1# 0=unsymmetric pattern, 1=symmetric pattern, 2=symmetric matrix in RSA
0 #2# RHS file name (0=make a rhs (sol = [1]))
ITERATIVE #3# Method (HYBRID, ITERATIVE)
1e-7 #4# Relative residual norm
ALL #5# Fill-in : Strictly=0, Locally=ALL
100 #6# GMRES maximum iteration
100 #7# GMRES restart
0.001 #8# Numerical threshold in ILUT for interior domain
0.001 #9# Numerical threshold in ILUT for the interface
0.001 #10# Numerical threshold for coupling between the interior level and Schur
5 #11# Verbose level [0-4] (the higher the more it prints informations)

Important note for “ITERATIVE” method :

• it is better to set the parameter #8# a threshold value greater than 0 ;

• in the case of the full “ITERATIVE” strategy when no argument is given
to testHIPS.ex, the parallelization scheme use one domain per processor.
mpirun -np 16 ./testHIPS.ex

Example to read an unsymmetric matrix in Harwell boeing format (RUA) : If you are
sure that the matrix non zero pattern is symmetric you can set the parameter #1# to 1.
If it is not the case (or you are not sure) set this parameter to 0 : it will symmetrize the
matrix non-zero pattern.

../MATRICES/orsirr_1.rua #0# Matrix name and driver
0 #1# 0=unsymmetric pattern, 1=symmetric pattern, 2=symmetric matrix in RSA

Example to read a symmetric complex matrix in matrix market format (require to com-
pile the complex version of HIPS) :

3../MATRICES/young4c_.mtx #0# Matrix name and driver
2 #1# 0=unsymmetric pattern, 1=symmetric pattern, 2=symmetric matrix in RSA

Example to use a right hand side member : you must write in a file the values of the
right hand side in natural order that is to say the original numbering of the matrix
in inputs ; the ith line of the file contains only one entry that is the value of the ith

component of the rhs.

./rhs #2# RHS file name (0=make a rhs (sol = [1]))

3.2 Contents of HIPS directory 5

3.2 Contents of HIPS directory

% DOC/ - documentation
hips_user.pdf - this file
CeCILL-C_V1*.txt - licensing agreement (english / french)

SRC/ - the library source files

TESTS/ - driver programs, input files
MATRICES/ - sample problems in the Harwell-Boeing

format or Matrix Market
PARALLEL/ - standalone program to solve a linear system

in parallel

LIB/ - directory in which the HIPS library and
HIPS headers are stored

makefile.in - compilers and compilation options are set
up in this file

Makefile_In_Example/ - preconfigured makefile.in for some architecture.
makefile - complete makefile (does not need modification)

4 HIPS’s Library Interface

4.1 Solver setup functions

Functions

• INTS HIPS_Initialize (INTS idnbr)
• INTS HIPS_SetDefaultOptions (INTS id, INTS stratnum)
• INTS HIPS_SetOptionINT (INTS id, INTS number, INTS value)
• INTS HIPS_SetOptionREAL (INTS id, INTS number, REAL value)

4.1.1 Function Documentation

4.1.1.1 INTS HIPS_Initialize (INTS idnbr)

In HIPS, each different linear problem is identified by an id. This
id corresponds to a internal structure that contains intern data such as a matrix, options
for a given problem. Unless you need to solve concurently several linear systems you
do not need to set idnbr 1.

4.1 Solver setup functions 6

Parameters:

idnbr - Maximum number of different problems that will be created.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_INITIALIZE(IDNBR, IERROR)
INTS, INTENT(IN) :: IDNBR
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_INITIALIZE

4.1.1.2 INTS HIPS_SetDefaultOptions (INTS id, INTS stratnum)

Set default options corresponding to a specific solver strategy for the problem number
∗id∗. A strategy is identified by a ∗stratnum∗ ID. In HIPS, you can choose between a
full iterative and a hybrid direct/iterative strategy.

Parameters:

id - Problem identification number.
stratnum - Solver strategy id. Can be set to HIPS_ITERATIVE or HIPS_-

HYBRID.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to
a specific error. This number can be used in HIPS_PrintError or HIPS_ExitOnError.
Fortran interface:

SUBROUTINE HIPS_SETDEFAULTOPTIONS(ID, STRATNUM, IERROR)
INTS, INTENT(IN) :: ID, STRATNUM
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETDEFAULTOPTIONS

4.1.1.3 INTS HIPS_SetOptionINT (INTS id, INTS number, INTS value)

Set an option described by an integer number. An option is indentified by ∗number∗.
∗value∗ contain the value to assign to the option ∗number∗ for the problem ∗id∗.

Parameters:

id - Problem identification number.
number - Identification of the integer parameter.
value - Value to assign.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

4.2 Graph setup function 7

SUBROUTINE HIPS_SETOPTIONINT(ID, NUMBER, VALUE, IERROR)
INTS, INTENT(IN) :: ID, NUMBER, VALUE
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETOPTIONINT

4.1.1.4 INTS HIPS_SetOptionREAL (INTS id, INTS number, REAL value)

Set an option described by a real number. An option is indentified by ∗number∗.
∗value∗ contain the value to assign to the option ∗number∗ for the problem ∗id∗.

Parameters:

id - Problem identification number.

number - Identification of the integer parameter.

value - Value to set the parameter to.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to
a specific error that can be used with HIPS_PrintError or HIPS_ExitOnError. Fortran
interface:

SUBROUTINE HIPS_SETOPTIONREAL(ID, NUMBER, VALUE, IERROR)
INTS, INTENT(IN) :: ID, NUMBER
REAL, INTENT(IN) :: VALUE
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETOPTIONREAL

4.2 Graph setup function

Functions

• INTS HIPS_GraphBegin (INTS id, INTS n, INTL edgenbr)
• INTS HIPS_GraphEdge (INTS id, INTS col, INTS row)
• INTS HIPS_GraphEnd (INTS id)
• INTS HIPS_GraphDistrCSR (INTS id, INTS n, INTS ln, INTS ∗nodelist, INTL
∗lrowptr, INTS ∗cols)

• INTS HIPS_GraphGlobalCSR (INTS id, INTS n, INTL ∗rowptr, INTS ∗cols,
INTS root)

• INTS HIPS_GraphGlobalCSC (INTS id, INTS n, INTL ∗colptr, INTS ∗rows,
INTS root)

• INTS HIPS_GraphGlobalIJV (INTS id, INTS n, INTL nnz, INTS ∗row, INTS
∗col, INTS root)

4.2 Graph setup function 8

4.2.1 Function Documentation

4.2.1.1 INTS HIPS_GraphBegin (INTS id, INTS n, INTL edgenbr)

Begin building the adjency graph for renumbering and all preprocessing.

Allocate temporary structures needed to build the graph.

Parameters:

id - Problem identification number.

n - Global number of nodes in the graph.

edgenbr - Number of edges which will be added in the graph by proc.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GRAPHBEGIN(ID, N, EDGENBR, IERROR)
INTS, INTENT(IN) :: ID, N
INTL, INTENT(IN) :: EDGENBR
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GRAPHBEGIN

4.2.1.2 INTS HIPS_GraphDistrCSR (INTS id, INTS n, INTS ln, INTS ∗
nodelist, INTL ∗ lrowptr, INTS ∗ cols)

Enter the matrix adjacency graph using the distributed Compress
Sparse Row format. Each processors has a set of row : the list of these rows (in global
number) is in nodelist. If the set of rows

Parameters:

id - Problem identification number.

n - total number of vertice

ln - Number of local rows

nodelist - List of the local row in global numerbing : cols(lrowptr(i):lrowptr(i+1))
are the columns indices of edges in the row nodelist(i)

lrowptr - Index of the first element of each row in ∗LCOLS∗ and ∗VALUES∗
arrays.

lcols - Local column indice array.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

4.2 Graph setup function 9

SUBROUTINE HIPS_GRAPHDISTRCSR(ID, N, LN, NODELIST, LROWPTR, COLS, IERROR)
INTS, INTENT(IN) :: ID, LN, N
INTS, DIMENSION(0), INTENT(IN) :: NODELIST, COLS
INTL, DIMENSION(0), INTENT(IN) :: LROWPTR
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GRAPHDISTRCSR

4.2.1.3 INTS HIPS_GraphEdge (INTS id, INTS col, INTS row)

Adds an edge to the graph.

HIPS_GraphBegin must have been called before.

Parameters:

id - Problem identification number.

row - First vertex of the edge.

col - Second vertex of the edge.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GRAPHEDGE(ID, ROW, COL, IERROR)
INTS, INTENT(IN) :: ID, ROW, COL
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GRAPHEDGE

4.2.1.4 INTS HIPS_GraphEnd (INTS id)

End the graph building. HIPS_GraphBegin must have been called before.

Parameters:

id - Problem identification number.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GRAPHEND(ID, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GRAPHEND

4.2 Graph setup function 10

4.2.1.5 INTS HIPS_GraphGlobalCSC (INTS id, INTS n, INTL ∗ colptr, INTS
∗ rows, INTS root)

Build an adjency graph from a Compress Sparse Column matrix pattern.

Needs HIPS_SetDefaultOptions to be called before.

This function depends on integer parameter ∗HIPS_BASEVAL∗.

Parameters:

id - Problem identification number.

n - Global number of columns

colptr - Index of the first element of each column in ∗ROWS∗ array.

rows - Global row number array.

root - Root processor : this processor enter the global data.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GRAPHGLOBALCSC(ID, N, COLPTR, ROWS, ROOT, IERROR)
INTS, INTENT(IN) :: ID, N, ROOT
INTL, DIMENSION(0), INTENT(IN) :: COLPTR
INTL, DIMENSION(0), INTENT(IN) :: ROWS
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GRAPHGLOBALCSC

4.2.1.6 INTS HIPS_GraphGlobalCSR (INTS id, INTS n, INTL ∗ rowptr,
INTS ∗ cols, INTS root)

Build an adjency graph from a Compress Sparse Row matrix pattern.

Parameters:

id - Problem identification number.

n - Global number of columns

rowptr - Index of the first element of each row in ∗COLS∗ array.

cols - Global column numbers array.

root - Root processor : this processor enter the global data.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

4.3 IO functions 11

SUBROUTINE HIPS_GRAPHGLOBALCSR(ID, N, ROWPTR, COLS, ROOT, IERROR)
INTS, INTENT(IN) :: ID, N, ROOT
INTL, DIMENSION(0), INTENT(IN) :: ROWPTR
INTS, DIMENSION(0), INTENT(IN) :: COLS
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GRAPHGLOBALCSR

4.2.1.7 INTS HIPS_GraphGlobalIJV (INTS id, INTS n, INTL nnz, INTS ∗
row, INTS ∗ col, INTS root)

Build an adjency graph from a Compress Sparse Column matrix pattern.

Needs HIPS_SetDefaultOptions to be called before.

This function depends on integer parameter ∗HIPS_BASEVAL∗.

Parameters:

id - Problem identification number.
n - Global number of unknowns.
nnz - Global number of non zeros.
row - Global column number array. edges.
col - Global row number array.
root - Root processor : this processor enter the global data.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GRAPHGLOBALIJV(ID, N, NNZ, ROW, COL, ROOT, IERROR)
INTS, INTENT(IN) :: ID, N, ROOT
INTL, INTENT(IN) :: NNZ
INTS, DIMENSION(0), INTENT(IN) :: ROW
INTS, DIMENSION(0), INTENT(IN) :: COL
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GRAPHGLOBALIJV

4.3 IO functions

Functions

• INTS HIPS_SetupSave (INTS id, char ∗directory)
• INTS HIPS_SetupLoad (INTS id, char ∗directory)
• INTS HIPS_LocalMatricesSave (INTS id, INTS nproc, INTS n, INTL ∗rowptr,

INTS ∗col, COEF ∗values, char ∗directory)
• INTS HIPS_LocalMatriceLoad (INTS id, INTS ∗sym, INTS ∗n, INTL ∗∗rowptr,

INTS ∗∗cols, COEF ∗∗values, char ∗sfile_path)

4.3 IO functions 12

4.3.1 Detailed Description

Allows to save and load solver state after preprocessing.

4.3.2 Function Documentation

4.3.2.1 INTS HIPS_LocalMatriceLoad (INTS id, INTS ∗ sym, INTS ∗ n, INTL
∗∗ rowptr, INTS ∗∗ cols, COEF ∗∗ values, char ∗ sfile_path)

This function loads the local matrix of a processor from disk. The local matrix must
have been generated by HIPS_LocalMatricesSave.

Parameters:

id - Problem identification number.
sym - Return value : 0 unsymetric matrix, 1 symmetric matrix
n - Number of columns.
rowptr - Index of the first element of each rows in ∗COLS∗ and values∗ array.
cols - Row number array.
values - values array.
directory - Path to the directory where to save the local matrices.

In C the arrays rowptr and cols are allocated by the function. In Fortran, these array
should have been allocated to a sufficient size. In Fortran, ∗STR_LEN∗ is the length
of the string directory.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_LOCALMATRICELOAD(ID, SYM, N, ROWPTR, COLS, VALUES, DIRECTORY,
STR_LEN, IERROR)
INTS, INTENT(IN) :: ID, STR_LEN
INTS, INTENT(OUT) :: SYM, N
INTL, DIMENSION(0), INTENT(OUT) :: ROWPTR
INTS, DIMENSION(0), INTENT(OUT) :: COLS
COEF, DIMENSION(0), INTENT(OUT) :: VALUES
CHARACTER(len=*), INTENT(IN) :: DIRECTORY
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_LOCALMATRICELOAD

4.3.2.2 INTS HIPS_LocalMatricesSave (INTS id, INTS nproc, INTS n, INTL
∗ rowptr, INTS ∗ col, COEF ∗ values, char ∗ directory)

This function saves for each processor its local matrix. The local matrix is generated
from the global one. Each matrix is save in a different file.

4.3 IO functions 13

Parameters:

id - Solver instance identification number.

nproc - number of processors that will run the solver.

n - Number of columns.

rowptr - Index of the first element of each rows in ∗COLS∗ and values∗ array.

cols - Row number array.

values - values array.

directory - Path to the directory where to save the local matrices.

In Fortran, ∗STR_LEN∗ is the length of the string directory.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_LOCALMATRICESSAVE(ID, NPROC, N, ROWPTR, COLS, VALUES, DIRECTO
RY, STR_LEN, IERROR)
INTS, INTENT(IN) :: ID, NPROC, N, STR_LEN
INTL, DIMENSION(0), INTENT(IN) :: ROWPTR
INTS, DIMENSION(0), INTENT(IN) :: COLS
COEF, DIMENSION(0), INTENT(IN) :: VALUES
CHARACTER(len=*), INTENT(IN) :: DIRECTORY
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_LOCALMATRICESSAVE

4.3.2.3 INTS HIPS_SetupLoad (INTS id, char ∗ directory)

Loads preprocessing result from disk, into ∗directory∗, where it had been saved by
HIPS_Save.

Parameters:

id - Problem identification number.

directory - Path to the directory where to load the solver preprocessing data.

In Fortran, ∗STR_LEN∗ is the length of the string directory.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_SETUPLOAD(ID, DIRECTORY, STR_LEN, IERROR)
INTS, INTENT(IN) :: ID, STR_LEN
CHARACTER(len=*), INTENT(IN) :: DIRECTORY
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETUPLOAD

4.4 Get the internal HIPS distribution 14

4.3.2.4 INTS HIPS_SetupSave (INTS id, char ∗ directory)

Save the result of the preprocessing steps (graph renumbering
and partitioning) on disk in ∗directory∗. Then computation can be resumed in parallel
by using HIPS_Load.

To call this function, the graph of hte matrix must has been entered before by one of
the HIPS graph function.

Parameters:

id - Solver instance identification number.

directory - Path to the directory where to save the preprocessing results.

In Fortran, ∗STR_LEN∗ is the length of the string directory.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_SETUPSAVE(ID, DIRECTORY, STR_LEN, IERROR)
INTS, INTENT(IN) :: ID, STR_LEN
CHARACTER(len=*), INTENT(IN) :: DIRECTORY
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETUPSAVE

4.4 Get the internal HIPS distribution

Functions

• INTS HIPS_GetLocalNodeNbr (INTS id, INTS ∗nodenbr)
• INTS HIPS_GetLocalNodeList (INTS id, INTS ∗nodelist)
• INTS HIPS_GetLocalUnknownNbr (INTS id, INTS ∗unkownnbr)
• INTS HIPS_GetLocalUnknownList (INTS id, INTS ∗unknownlist)
• INTS HIPS_SetPartition (INTS id, INTS ndom, INTS ∗mapptr, INTS ∗mapp)
• INTS HIPS_AssemblyBegin (INTS id, INTL nnz, INTS op, INTS op2, INTS

mode, INTS symmetric)
• INTS HIPS_AssemblySetValue (INTS id, INTS row, INTS col, COEF value)
• INTS HIPS_AssemblySetNodeValues (INTS id, INTS row, INTS col, COEF
∗values)

• INTS HIPS_AssemblySetBlockValues (INTS id, INTS nrow, INTS ∗rowlist,
INTS ncol, INTS ∗collist, COEF ∗values)

• INTS HIPS_AssemblyEnd (INTS id)
• INTS HIPS_MatrixReset (INTS id)
• INTS HIPS_FreePrecond (INTS id)

4.4 Get the internal HIPS distribution 15

• INTS HIPS_MatrixLocalCSR (INTS id, INTS ln, INTS ∗unknownlist, INTL
∗lrowptr, INTS ∗lcols, COEF ∗values, INTS op, INTS op2, INTS sym)

• INTS HIPS_MatrixDistrCSR (INTS id, INTS ln, INTS ∗unknownlist, INTL
∗lrowptr, INTS ∗cols, COEF ∗values, INTS op, INTS op2, INTS mode, INTS
sym)

• INTS HIPS_MatrixGlobalCSR (INTS id, INTS n, INTL ∗rowptr, INTS ∗cols,
COEF ∗values, INTS root, INTS op, INTS sym)

• INTS HIPS_MatrixGlobalCSC (INTS id, INTS n, INTL ∗colptr, INTS ∗rows,
COEF ∗values, INTS root, INTS op, INTS sym)

• INTS HIPS_MatrixGlobalIJV (INTS id, INTS n, INTL nnz, INTS ∗rows, INTS
∗cols, COEF ∗values, INTS root, INTS op, INTS sym)

• INTS HIPS_SetSubmatrixCoef (INTS id, INTS op, INTS op2, INTS n, INTL
∗ia, INTS ∗ja, COEF ∗a, INTS sym_matrix, INTS ln, INTS ∗nodelist)

4.4.1 Function Documentation

4.4.1.1 INTS HIPS_AssemblyBegin (INTS id, INTL nnz, INTS op, INTS op2,
INTS mode, INTS symmetric)

Compute a partition of a graph with or without overlap between the
partition. The overlap is computed using some heuristic that try to minimizes its size
: it tries to compute an overlap of one node (or unknown). When no overlap is needed
this function is merely a call to METIS or SCOTCH (graph partitioner).

Parameters:

ndom - Number of domains

overlap - 0 : no overlap in the partition , 1 : overlap as small as possible

numflag - 0 : numbering start from 0 (like in C), 1: numbering start from 1 (like
in Fortran). This concern the inputs as well as the ouput of the function.

n - number of vertice in the graph.

rowptr - Index of the first element of each row in ∗COLS∗ array.

cols - Global column numbers array.

sym - 0 : the graph is not symmetric (it will be symmetrize in intern). 1 : the
graph is symmetric (better is will be used as this inside the function).

mapptr - Array of indexes for domain in mapptr : mapp(mapptr(i):mapptr(i+1)-1)
contains the nodes domain i

mapp - Array that contains the node lists for each domain.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

4.4 Get the internal HIPS distribution 16

Not provided.

*/
INTS HIPS_GraphPartition(INTS ndom, INTS overlap, INTS numflag, INTS n, INTL *row

ptr, INTS *cols, INTS sym, INTS **mapptr, INTS **mapp);

INTS HIPS_GetLocalDomainNbr(INTS id, INTS *domnbr, INTS *listsize);
INTS HIPS_GetLocalDomainList(INTS id, INTS *mapptr, INTS *mapp);

4.4.1.2 INTS HIPS_AssemblyEnd (INTS id)

End an assembly loop.

HIPS_AssemblyBegin must have been called before.

Parameters:

id - Problem identification number.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_ASSEMBLYEND(ID, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_ASSEMBLYEND

4.4.1.3 INTS HIPS_AssemblySetBlockValues (INTS id, INTS nrow, INTS ∗
rowlist, INTS ncol, INTS ∗ collist, COEF ∗ values)

Set coefficients value for a dense submatrix (rowlist, colist).

Typically, this function is to be used to enter elementary matrix arising from PDE
discretization.

HIPS_AssemblyBegin must have been called before.

Parameters:

id - Problem identification number.

nrow - Number of rows in the dense matrix.

rowlist - List of row indices (global ordering).

ncol - Number of columns in the dense matrix.

4.4 Get the internal HIPS distribution 17

collist - List of column indices (global numbering).

values - Values array, stored by column (Fortran style)

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_ASSEMBLYSETBLOCKVALUES(ID, NROW, ROWLIST, &
& NCOL, COLLIST, VALUES, IERROR)

INTS, INTENT(IN) :: ID, NROW, NCOL
INTS, DIMENSION(0), INTENT(IN) :: ROWLIST
INTS, DIMENSION(0), INTENT(IN) :: COLLIST
COEF, DIMENSION(0), INTENT(IN) :: VALUES
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_ASSEMBLYSETBLOCKVALUES

4.4.1.4 INTS HIPS_AssemblySetNodeValues (INTS id, INTS row, INTS col,
COEF ∗ values)

Set coefficients of a dense block corresponding to the edge (i, j) in the node graph.
This function is useful only when the dof 1 (see the ∗HIPS_DOF∗ integer parameter)
otherwise it is equivalent to HIPS_AssemblySetValue. Indeed each (i, j) entry of the
node graph correspond to a (dof, dof) dense block in the linear system. The storage of
the block is made by columns by columns in the vector values∗.

HIPS_AssemblyBegin must have been called before.

Parameters:

id - Problem identification number.

row - Row index (global numbering) of the node.

col - Column index (global numbering) of the node.

values - Values of the dense block coefficient stored by columns.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_ASSEMBLYSETNODEVALUES(ID, ROW, COL, VALUES, IERROR)
INTS, INTENT(IN) :: ID, ROW, COL
COEF, DIMENSION(0), INTENT(IN) :: VALUES
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_ASSEMBLYSETNODEVALUES

4.4 Get the internal HIPS distribution 18

4.4.1.5 INTS HIPS_AssemblySetValue (INTS id, INTS row, INTS col, COEF
value)

Set a coefficient value in the matrix.

HIPS_AssemblyBegin must have been called before.

Parameters:

id - Problem identification number.

row - Row index (global numbering) of the coefficient.

col - Column index (global numbering) of the coefficient.

value - Value of the coefficient.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_ASSEMBLYSETVALUE(ID, ROW, COL, VALUE, IERROR)
INTS, INTENT(IN) :: ID, ROW, COL
COEF, INTENT(IN) :: VALUE
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_ASSEMBLYSETVALUE

4.4.1.6 INTS HIPS_FreePrecond (INTS id)

Free the preconditioner matrices.

Parameters:

id - Problem identification number.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_FREEPRECOND(ID, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_FREEPRECOND

4.4.1.7 INTS HIPS_GetLocalNodeList (INTS id, INTS ∗ nodelist)

This function gives the local node list corresponding to the HIPS domain partition.

The array ∗nodelist∗ must have been allocated with a size of at least ∗nodenbr∗ (ob-
tained by the function HIPS_GetLocalNodeNbr).

4.4 Get the internal HIPS distribution 19

Parameters:

id - Problem identification number.

nodelist - Array where to store the list of local nodes.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GETLOCALNODELIST(ID, NODELIST, IERROR)
INTS, INTENT(IN) :: ID
! Warning : 0 is not the size of the array.
! Writing DIMENSION(:) does not work with
! the C function call (fortran send the array size?)
INTS, DIMENSION(0), INTENT(OUT) :: NODELIST
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GETLOCALNODELIST

4.4.1.8 INTS HIPS_GetLocalNodeNbr (INTS id, INTS ∗ nodenbr)

This function gives the number of local nodes in the HIPS distribution. Be aware that
the HIPS node partition uses an overlap (one node wide) between each domain.

The graph is required to get the distribution. It must has been entered by one of the
HIPS graph input function.

Parameters:

id - Problem identification number.

nodenbr - Number of local nodes.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GETLOCALNODENBR(ID, NODENBR, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: NODENBR
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GETLOCALNODENBR

4.4.1.9 INTS HIPS_GetLocalUnknownList (INTS id, INTS ∗ unknownlist)

This function gives the local unknown list corresponding to the HIPS domain
partition.

The array ∗unknownlist∗ must have been allocated with a size of at least ∗unknownnbr∗
(obtained by the function HIPS_GetLocalUnknownNbr). If the ∗HIPS_DOF∗ integer

4.4 Get the internal HIPS distribution 20

option has been set to 1 (default value) then HIPS_GetLocalUnknownList is equivalent
to HIPS_GetLocalNodeList.

Parameters:

id - Problem identification number.

unkownlist - Array where to store the list of local unknowns.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GETLOCALUNKOWNLIST(ID, UNKOWNLIST, IERROR)
INTS, INTENT(IN) :: ID
INTS, DIMENSION(0), INTENT(OUT) :: UNKOWNLIST
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GETLOCALUNKOWNLIST

4.4.1.10 INTS HIPS_GetLocalUnknownNbr (INTS id, INTS ∗ unkownnbr)

This function gives the number of local unknowns in the
HIPS distribution. Be aware that the HIPS unknowns partition uses an overlap between
each domain. If the ∗HIPS_DOF∗ integer option has been set to 1 (default value) then
HIPS_GetLocalUnknownNbr is equivalent to HIPS_GetLocalNodeNbr.

The graph is required to get the distribution. It must has been entered by one of the
HIPS graph input function.

Parameters:

id - Problem identification number.

unkownnbr - Number of local unknowns.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GETLOCALUNKOWNNBR(ID, UNKOWNNBR, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: UNKOWNNBR
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GETLOCALUNKOWNNBR

4.4 Get the internal HIPS distribution 21

4.4.1.11 INTS HIPS_MatrixDistrCSR (INTS id, INTS ln, INTS ∗ unknownlist,
INTL ∗ lrowptr, INTS ∗ cols, COEF ∗ values, INTS op, INTS op2,
INTS mode, INTS sym)

Add a distrbuted matrix in Compress Sparse Row matrix to
the matrix. Each processors has a set of row : the list of these rows (in global number)
is in unknownlist. If the set of rows

IMPORTANT : the indices corresponds to the unknwon numbering, i.e. if you use
HIPS_DOF 1, you have to expand the matrix in unknwon indices.

Parameters:

id - Problem identification number.

ln - Dimension of the local matrix

unknownlist - List of the local row in global numerbing :
cols(lrowptr(i):lrowptr(i+1) are the columns indices of coefficients in
row unknownlist(i))

lrowptr - Index of the first element of each row in ∗LCOLS∗ and ∗VALUES∗
arrays.

lcols - Local column indice array.

values - values array.

op - Operation to perform on the matrix problem : overwrite values of the existing
matrix or add new entries to the former ones (see HIPS_ASSEMBLY_OP).
op2 - Operation to perform if several entries are entered for a same (i,j) lo-
cation on different processor (see HIPS_ASSEMBLY_OP). This allows to
control the operation to do for overlapped part of the matrix.

mode - Indicates if the user ensures he will respect the HIPS internal un-
knowns distribution (see HIPS_ASSEMBLY_MODE). Be careful : if you
choose HIPS_ASSEMBLY_RESPECT, then any coefficient that is not in
M(unknownlist1, unknownlist1) --where unknownlist1 is the HIPS inter-
nal distribution of the unknowns -- will be ignored. You can get the hips
internal data distribution by using ∗HIPS_GetUnknownnbr∗ and ∗HIPS_-
GetUnknownlist∗.

sym - Indicates if the user will give coefficients only in the lower triangular part
and that HIPS must consider that these coefficients are also the same in the
upper triangular part. For a symmetric problem (indicated by the ∗HIPS_-
SYMMETRIC∗ integer option) any coefficient Aij = Aji so you should enter
only the lower of upper triangular part of the matrix and set ∗sym∗ to 1.f

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

4.4 Get the internal HIPS distribution 22

SUBROUTINE HIPS_MATRIXDISTRCSR(ID, LN, UNKNOWNLIST, LROWPTR, COLS, VALUES, &
& OP, OP2, MODE, SYM, IERROR)

INTS, INTENT(IN) :: ID, LN, OP, OP2, SYM, MODE
INTS, DIMENSION(0), INTENT(IN) :: UNKNOWNLIST, COLS
INTL, DIMENSION(0), INTENT(IN) :: LROWPTR
COEF, DIMENSION(0), INTENT(IN) :: VALUES
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_MATRIXDISTRCSR

4.4.1.12 INTS HIPS_MatrixGlobalCSC (INTS id, INTS n, INTL ∗ colptr,
INTS ∗ rows, COEF ∗ values, INTS root, INTS op, INTS sym)

Add the given global Compress Sparse Column matrix to the matrix.

Parameters:

id - Problem identification number.
n - Number of columns.
colptr - Index of the first element of each column in ∗ROWS∗ and values∗ array.
rows - Row number array.
values - values array.
root - Root processor for MPI communications.
op - Operation to perform on the matrix problem : overwrite values of the existing

matrix or add new entries to the former ones (see HIPS_ASSEMBLY_OP).
sym - Indicates if the user will give coefficients only in the lower triangular part

and that HIPS must consider that these coefficients are also the same in the
upper triangular part. For a symmetric problem (indicated by the ∗HIPS_-
SYMMETRIC∗ integer option) any coefficient Aij = Aji so you should enter
only the lower of upper triangular part of the matrix and set ∗sym∗ to 1.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_MATRIXGLOBALCSC(ID, N, COLPTR, ROWS, &
& VALUES, ROOT, OP, SYM, IERROR)

INTS, INTENT(IN) :: ID, N, ROOT, OP, SYM
INTL, DIMENSION(0), INTENT(IN) :: COLPTR
INTS, DIMENSION(0), INTENT(IN) :: ROWS
COEF, DIMENSION(0), INTENT(IN) :: VALUES
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_MATRIXGLOBALCSC

4.4.1.13 INTS HIPS_MatrixGlobalCSR (INTS id, INTS n, INTL ∗ rowptr,
INTS ∗ cols, COEF ∗ values, INTS root, INTS op, INTS sym)

Add the given global Compress Sparse Row matrix to the matrix.

4.4 Get the internal HIPS distribution 23

Parameters:

id - Problem identification number.

n - Number of columns.

rowptr - Index of the first element of each row in ∗COLS∗ and values∗ array.

cols - Column number array.

values - values array.

root - Root processor for MPI communications.

op - Operation to perform on the matrix problem : overwrite values of the existing
matrix or add new entries to the former ones (see HIPS_ASSEMBLY_OP).

sym - Indicates if the user will give coefficients only in the lower triangular part
and that HIPS must consider that these coefficients are also the same in the
upper triangular part. For a symmetric problem (indicated by the ∗HIPS_-
SYMMETRIC∗ integer option) any coefficient Aij = Aji so you should enter
only the lower of upper triangular part of the matrix and set ∗sym∗ to 1.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_MATRIXGLOBALCSR(ID, N, ROWPTR, COLS, VALUES, &
& ROOT, OP, SYM, IERROR)

INTS, INTENT(IN) :: ID, N, ROOT, OP, SYM
INTL, DIMENSION(0), INTENT(IN) :: ROWPTR
INTS, DIMENSION(0), INTENT(IN) :: COLS
COEF, DIMENSION(0), INTENT(IN) :: VALUES
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_MATRIXGLOBALCSR

4.4.1.14 INTS HIPS_MatrixGlobalIJV (INTS id, INTS n, INTL nnz, INTS ∗
rows, INTS ∗ cols, COEF ∗ values, INTS root, INTS op, INTS sym)

Add the given global Compress Sparse Column matrix to the matrix.

Parameters:

id - Problem identification number.

n - Number of edges.

nnz - Number of non zeros.

rows - Global row number array.

cols - Global column number array.

values - values array.

root - Root processor for MPI communications.

4.4 Get the internal HIPS distribution 24

op - Operation to perform on the matrix problem : overwrite values of the existing
matrix or add new entries to the former ones (see HIPS_ASSEMBLY_OP).

sym - Indicates if the user will give coefficients only in the lower triangular part
and that HIPS must consider that these coefficients are also the same in the
upper triangular part. For a symmetric problem (indicated by the ∗HIPS_-
SYMMETRIC∗ integer option) any coefficient Aij = Aji so you should enter
only the lower of upper triangular part of the matrix and set ∗sym∗ to 1.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_MATRIXGLOBALIJV(ID, N, NNZ, ROWS, COLS, VALUES, &
& ROOT, OP, SYM, IERROR)

INTS, INTENT(IN) :: ID, ROOT, OP, SYM, N
INTL, INTENT(IN) :: NNZ
INTS, DIMENSION(0), INTENT(IN) :: ROWS, COLS
COEF, DIMENSION(0), INTENT(IN) :: VALUES
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_MATRIXGLOBALIJV

4.4.1.15 INTS HIPS_MatrixLocalCSR (INTS id, INTS ln, INTS ∗ unknownlist,
INTL ∗ lrowptr, INTS ∗ lcols, COEF ∗ values, INTS op, INTS op2,
INTS sym)

Add a submatrix in
Compress Sparse Row matrix to the matrix. The submatrix M corresponds to a matrix
(unknownlist, unknownlist) in CSR format where unknownlist is a subset of the list
of unknowns given by the function ∗HIPS_GetLocalUnknownList∗. The submatrix is
locally numbered : i.e. M(i, i) is to be added in A(nodelist, nodelist).

IMPORTANT : the indices corresponds to the unknwon numbering, i.e. if you use
HIPS_DOF 1, you have to expand the matrix in unknwon indices.

Parameters:

id - Problem identification number.

ln - Dimension of the local matrix

unknownlist - List of the local unknown in global numbering

lrowptr - Index of the first element of each row in ∗LCOLS∗ and ∗VALUES∗
arrays.

lcols - Local column indice array.

values - values array.

op - Operation to perform on the matrix problem : overwrite values of the existing
matrix or add new entries to the former ones (see HIPS_ASSEMBLY_OP).

4.4 Get the internal HIPS distribution 25

op2 - Operation to perform if several entries are entered for a same (i,j) lo-
cation on different processor (see HIPS_ASSEMBLY_OP). This allows to
control the operation to do for overlapped part of the matrix.

sym - Indicates if the user will give coefficients only in the lower triangular part
and that HIPS must consider that these coefficients are also the same in the
upper triangular part. For a symmetric problem (indicated by the ∗HIPS_-
SYMMETRIC∗ integer option) any coefficient Aij = Aji so you should enter
only the lower of upper triangular part of the matrix and set ∗sym∗ to 1.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_MATRIXLOCALCSR(ID, LN, UNKNOWNLIST, LROWPTR, LCOLS, VALUES, &

& OP, OP2, SYM, IERROR)
INTS, INTENT(IN) :: ID, LN, OP, OP2, SYM
INTS, DIMENSION(0), INTENT(IN) :: UNKNOWNLIST, LCOLS
INTL, DIMENSION(0), INTENT(IN) :: LROWPTR
COEF, DIMENSION(0), INTENT(IN) :: VALUES
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_MATRIXLOCALCSR

4.4.1.16 INTS HIPS_MatrixReset (INTS id)

Reset the matrix structure.

Parameters:

id - Problem identification number.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_MATRIXRESET(ID, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_MATRIXRESET

4.4.1.17 INTS HIPS_SetPartition (INTS id, INTS ndom, INTS ∗ mapptr, INTS
∗ mapp)

Sets a partition defined by the user. It can only be used for the recursive ITERATIVE
strategy.

4.5 Fill the right-hand-side member 26

Parameters:

id - Problem identification number.

ndom - Number of domains

mapptr - Array of indexes for domain in mapptr : mapp(mapptr(i):mapptr(i+1)-1)
contains the nodes domain i

mapp - Array that contains the node lists for each domain.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_SETPARTITION(ID, NDOM, MAPPTR, MAPP, IERROR)
INTS, INTENT(IN) :: ID, NDOM
INTS, DIMENSION(0), INTENT(IN) :: MAPPTR
INTS, DIMENSION(0), INTENT(IN) :: MAPP
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETPARTITION

4.4.1.18 INTS HIPS_SetSubmatrixCoef (INTS id, INTS op, INTS op2, INTS
n, INTL ∗ ia, INTS ∗ ja, COEF ∗ a, INTS sym_matrix, INTS ln,
INTS ∗ nodelist)

4.5 Fill the right-hand-side member

Functions

• INTS HIPS_SetGlobalRHS (INTS id, COEF ∗b, INTS proc_root, INTS op)
• INTS HIPS_SetLocalRHS (INTS id, COEF ∗b, INTS op, INTS op2)
• INTS HIPS_SetRHS (INTS id, INTS unknownnbr, INTS ∗unknownlist, COEF
∗b, INTS op, INTS op2, INTS mode)

• INTS HIPS_RHSReset (INTS id)

4.5.1 Function Documentation

4.5.1.1 INTS HIPS_RHSReset (INTS id)

Reset the right-hand-side.

Parameters:

id - Problem identification number.

4.5 Fill the right-hand-side member 27

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_RHSRESET(ID, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_RHSRESET

4.5.1.2 INTS HIPS_SetGlobalRHS (INTS id, COEF ∗ b, INTS proc_root,
INTS op)

Set the right-hand-side member in global mode.

Parameters:

id - Problem identification number.

b - Array of size global column number which correspond to the right-hand-side
member.

op - Operation on the right hand side : overwrite values of the existing rhs or add
new entries to the former ones (see HIPS_ASSEMBLY_OP).

root - Indicates which processor enter the global right-hand-side member,

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_SETGLOBALRHS(ID, B, ROOT, OP, IERROR)
INTS, INTENT(IN) :: ID, ROOT, OP
COEF, DIMENSION(0), INTENT(IN) :: B
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETGLOBALRHS

4.5.1.3 INTS HIPS_SetLocalRHS (INTS id, COEF ∗ b, INTS op, INTS op2)

Set the right-hand-side member in local mode.

Parameters:

id - Problem identification number.

b - Array of size local column number which correspond to the right-hand-side
member.

op - overwrite values of the existing matrix or add new entries to the former ones
(see HIPS_ASSEMBLY_OP). op2 - Operation to perform if several entries

4.5 Fill the right-hand-side member 28

are entered for a same vector component on different processor (see HIPS_-
ASSEMBLY_OP). This allows to control the operation to do for overlapped
part of the rhs.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_SETLOCALRHS(ID, B, OP, OP2, IERROR)
INTS, INTENT(IN) :: ID, OP, OP2
COEF, DIMENSION(0), INTENT(IN) :: B
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETLOCALRHS

4.5.1.4 INTS HIPS_SetRHS (INTS id, INTS unknownnbr, INTS ∗ unknownlist,
COEF ∗ b, INTS op, INTS op2, INTS mode)

Set the right-hand-side member, giving the list of coefficient that we set.

mode∗ shouldn’t be ∗HIPS_ASSEMBLY_RESPECT∗ if neither HIPS_-
GetLocalNodeList nor HIPS_GetLocalUnknownList has been called.

Parameters:

id - Problem identification number.

n - Number of coefficients to set.

coefsidx - List of global index of the coefficients to set.

B - Array of coefficients values.

op - overwrite values of the existing matrix or add new entries to the former ones
(see HIPS_ASSEMBLY_OP). op2 - Operation to perform if several entries
are entered for a same vector component on different processor (see HIPS_-
ASSEMBLY_OP). This allows to control the operation to do for overlapped
part of the rhs.

mode - Indicates if user ensure he will respect solvers distribution (see HIPS_-
ASSEMBLY_MODE).

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_SETRHS(ID, N, COEFSIDX, B, OP, OP2, MODE, IERROR)
INTS, INTENT(IN) :: ID, N, OP, OP2, MODE
INTS, DIMENSION(0), INTENT(IN) :: COEFSIDX
COEF, DIMENSION(0), INTENT(IN) :: B
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETRHS

4.6 Get the solution 29

4.6 Get the solution

Functions

• INTS HIPS_GetGlobalSolution (INTS id, COEF ∗x, INTS root)
• INTS HIPS_GetLocalSolution (INTS id, COEF ∗x)
• INTS HIPS_GetSolution (INTS id, INTS n, INTS ∗nlist, COEF ∗x, INTS mode)

4.6.1 Function Documentation

4.6.1.1 INTS HIPS_GetGlobalSolution (INTS id, COEF ∗ x, INTS root)

Perform Factorization and Solve, if needed, and then fill the global solution in ∗x∗.

Parameters:

id - Problem identification number.

x - Array of size global column number which will contain the solution

root - Indicates which processor will have the solution at the end of the call, -1 for
all.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GETGLOBALSOLUTION(ID, X, ROOT, IERROR)
INTS, INTENT(IN) :: ID, ROOT
COEF, DIMENSION(0), INTENT(OUT) :: X
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GETGLOBALSOLUTION

4.6.1.2 INTS HIPS_GetLocalSolution (INTS id, COEF ∗ x)

Perform Factorization and Solve, if needed, and then fill the local solution in ∗x∗.

Parameters:

id - Problem identification number.

x - Array that will contain the local solution corresponding to the HIPS unknown
distribution (that can be obtained by HIPS_GetUnknownList).

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

4.7 Clean up 30

SUBROUTINE HIPS_GETLOCALSOLUTION(ID, X, IERROR)
INTS, INTENT(IN) :: ID
COEF, DIMENSION(0), INTENT(OUT) :: X
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GETLOCALSOLUTION

4.6.1.3 INTS HIPS_GetSolution (INTS id, INTS n, INTS ∗ nlist, COEF ∗ x,
INTS mode)

Perform Factorization and Solve, if needed, and then fill the solution in ∗x∗ followin
the given index list.

Parameters:

id - Problem identification number.

n - Number of coefficients user wants to get.

coefsidx - List of the coefficients user wants to get.

x - Array that contain the local part of solution in return.

mode - Indicates if the user is sure to respect the distribution.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GETSOLUTION(ID, N, COEFSIDX, X, MODE, IERROR)
INTS, INTENT(IN) :: ID, MODE, N
INTS, DIMENSION(0), INTENT(IN) :: COEFSIDX
COEF, DIMENSION(0), INTENT(OUT) :: X
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_GETSOLUTION

4.7 Clean up

Functions

• INTS HIPS_Clean (INTS id)
• INTS HIPS_Finalize ()

4.7.1 Function Documentation

4.7.1.1 INTS HIPS_Clean (INTS id)

Clean the given instance of the solver structure’s.

4.8 Get HIPS’s Infos 31

Parameters:

id - Problem identification number.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_CLEAN(ID, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_CLEAN

4.7.1.2 INTS HIPS_Finalize ()

Clean all not cleaned instances and instances ID array.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_FINALIZE(IERROR)
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_FINALIZE

4.8 Get HIPS’s Infos

Functions

• INTS HIPS_GetInfoINT (INTS id, INTS infonum, INTL ∗value)
• INTS HIPS_GetInfoREAL (INTS id, INTS infonum, REAL ∗value)
• void HIPS_PrintError (INTS ierror)
• void HIPS_ExitOnError (INTS ierror)

4.8.1 Function Documentation

4.8.1.1 void HIPS_ExitOnError (INTS ierror)

Print the error message corresponding to ierror. If the ierr is not HIPS_SUCCESS
then the program is stopped.

Parameters:

ierror - Error identification number.

4.8 Get HIPS’s Infos 32

void

Fortran interface:

SUBROUTINE HIPS_EXITONERROR(IERROR)
INTS, INTENT(IN) :: IERROR

END SUBROUTINE HIPS_EXITONERROR

4.8.1.2 INTS HIPS_GetInfoINT (INTS id, INTS infonum, INTL ∗ value)

Get an info (integer number) from HIPS.

See HIPS_INFO_INT and the solver documentation to get available info list.

Parameters:

id - Problem identification number.

infonum - Wanted information number.

value - Integer which will contain the value of the information.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_GETINFOINT(ID, INFONUM, VALUE, IERROR)
INTS, INTENT(IN) :: ID, INFONUM
INTL, INTENT(OUT) :: VALUE
INTS, INTENT(OUT) :: IERROR
END SUBROUTINE HIPS_GETINFOINT

4.8.1.3 INTS HIPS_GetInfoREAL (INTS id, INTS infonum, REAL ∗ value)

Get an info (real number) from HIPS.

See HIPS_INFO_REAL and the solver documentation to get available info list.

Parameters:

id - Problem identification number.

infonum - Wanted information number.

value - Integer which will contain the value of the information.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

4.9 HIPS advanced functions 33

SUBROUTINE HIPS_GETINFOREAL(ID, INFONUM, VALUE, IERROR)
INTS, INTENT(IN) :: ID, INFONUM
REAL, INTENT(OUT) :: VALUE
INTS, INTENT(OUT) :: IERROR
END SUBROUTINE HIPS_GETINFOREAL

4.8.1.4 void HIPS_PrintError (INTS ierror)

Print the error message corresponding to ierror

Parameters:

ierror - Error identification number.

void

Fortran interface:

SUBROUTINE HIPS_PRINTERROR(IERROR)
INTS, INTENT(IN):: IERROR

END SUBROUTINE HIPS_PRINTERROR

4.9 HIPS advanced functions

Functions

• INTS HIPS_SetCommunicator (INTS id, MPI_Comm mpicom)
• INTS HIPS_MatrixVectorProduct (INTS id, COEF ∗x, COEF ∗y)
• INTS HIPS_TransposeMatrix (INTS id)
• INTS HIPS_ReadOptionsFromFile (INTS id, char ∗inputsname, INTS ∗sym_-

pattern, INTS ∗sym_matrix, char ∗matrixname, char ∗rhsname)
• INTS HIPS_CheckSolution (INTS id, INTS n, INTL ∗rowptr, INTS ∗cols,

COEF ∗values, COEF ∗sol, COEF ∗rhs, INTS sym)
• INTS HIPS_GetSubmatrix (INTS ln, INTS numflag, INTS ∗nodelist, INTS n,

INTL ∗ia, INTS ∗ja, COEF ∗a, INTL ∗∗lia, INTS ∗∗lja, COEF ∗∗la)
• void Matrix_Read (INTS job, INTS ∗t_n, INTL ∗t_nnz, INTL ∗ia, INTS ∗ja,

COEF ∗a, INTS ∗sym_matrix, char ∗matrix)

4.9.1 Function Documentation

4.9.1.1 INTS HIPS_CheckSolution (INTS id, INTS n, INTL ∗ rowptr, INTS ∗
cols, COEF ∗ values, COEF ∗ sol, COEF ∗ rhs, INTS sym)

This function check if the global solution (in initial numbering)
obtained by HIPS is exact (i.e. respect the relative residual norm error used to stop the

4.9 HIPS advanced functions 34

convergence in HIPS). It multiplies the solution by the initial matrix in CSR and check
the error compared to the expected error

Parameters:

id - Problem identification number.

n - Number of rows.

rowptr - Index of the first element of each row in ∗COLS∗ and values∗ array.

cols - Column number array.

values - values array.

sym - Indicates if the crs represents only the lower triangular part and that HIPS
must consider that these coefficients are also the same in the upper triangular
part.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

SUBROUTINE HIPS_CHECKSOLUTION(ID, N, ROWPTR, COLS, VALUES, SOL,
RHS, SYM, IERROR) INTS, INTENT(IN) :: ID, N, SYM INTL, DIMENSION(0),
INTENT(IN) :: ROWPTR INTS, DIMENSION(0), INTENT(IN) :: COLS COEF,
DIMENSION(0), INTENT(IN) :: VALUES COEF, DIMENSION(0), INTENT(IN) ::
SOL COEF, DIMENSION(0), INTENT(IN) :: RHS INTS, INTENT(OUT) :: IERROR
END SUBROUTINE HIPS_CHECKSOLUTION

4.9.1.2 INTS HIPS_GetSubmatrix (INTS ln, INTS numflag, INTS ∗ nodelist,
INTS n, INTL ∗ ia, INTS ∗ ja, COEF ∗ a, INTL ∗∗ lia, INTS ∗∗ lja,
COEF ∗∗ la)

4.9.1.3 INTS HIPS_MatrixVectorProduct (INTS id, COEF ∗ x, COEF ∗ y)

This function does a the product y = A.c where A is the matrix of the problem id.

Parameters:

id - Problem identification number.

x - Array that contain the local part of x corresponding to the HIPS unknown
distribution (that can be obtained by HIPS_GetUnknownList).

y - Array that contain the local part of y corresponding to the HIPS unknown
distribution (that can be obtained by HIPS_GetUnknownList).

ierror - Error identification number.

4.9 HIPS advanced functions 35

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_MATRIXVECTORPRODUCT(ID, X, Y, IERROR)
INTS, INTENT(IN) :: ID
COEF, DIMENSION(0), INTENT(IN) :: X
COEF, DIMENSION(0), INTENT(OUT) :: Y
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_MATRIXVECTORPRODUCT

4.9.1.4 INTS HIPS_ReadOptionsFromFile (INTS id, char ∗ inputsname, INTS
∗ sym_pattern, INTS ∗ sym_matrix, char ∗ matrixname, char ∗
rhsname)

This function reads the parameter in a "Inputs" file. This function can be
used to write a code that load a matrix from disk and/or should read some HIPS basic
parameters from a file instead of using HIPS_SetOptionINT or HIPS_OptionREAL in
the code.

Parameters:

id - Problem identification number.

inputsname - name of the "inputs" file. sym_pattern - return wether the matrix
has a symmetric non zero pattern (1) or not (0) sym_matrix - return wether
the matrix is symmetric (only lower triangular is stored in CSC) or not

matrixname - return name of the matrix file.

rhsname - return name of the rhs file

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

SUBROUTINE HIPS_READOPTIONSFROMFILE(ID, SYM_PATTERN, SYM_-
MATRIX, INPUTSNAME, MATRIXNAME, RHSNAME, IERROR) INTS, IN-
TENT(IN) :: ID INTS, INTENT(OUT) :: SYM_PATTERN, SYM_MATRIX
CHARACTER(LEN=∗), INTENT(IN) :: INPUTSNAME CHARACTER(LEN=∗),
INTENT(OUT):: MATRIXNAME, RHSNAME INTS, INTENT(OUT):: IERROR
END SUBROUTINE HIPS_READOPTIONSFROMFILE

4.9.1.5 INTS HIPS_SetCommunicator (INTS id, MPI_Comm mpicom)

Sets MPI communicator for the given solver instance.

Needs HIPS_SetDefaultOptions to be called before to initiate solver instance data.

4.9 HIPS advanced functions 36

Musn’t be called before HIPS_SAVE, HIPS_LOAD, HIPS_GetLocalNodeNbr nor
HIPS_GetLocalUnknownNbr because the solver as to be runned with the same MPI
communicator all along.

If this function is not called, MPI communicator will be MPI_COMM_WORLD∗.

This function may not exist if the solver has been compiled without MPI.

Parameters:

id - Problem identification number.

mpicomm - MPI communicator to be used for solving this problem.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_SETCOMMUNICATOR(ID, MPICOMM, IERROR)
INTS, INTENT(IN) :: ID
INTEGER, INTENT(IN) :: MPICOMM
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_SETCOMMUNICATOR

4.9.1.6 INTS HIPS_TransposeMatrix (INTS id)

This function transpose the matrix problem.

Parameters:

id - Problem identification number.

ierror - Error identification number.

HIPS_SUCCESS - Successful return. HIP_ERR_xx - A number that corresponds to a
specific error that can be used with HIPS_PrintError or HIPS_ExitOnError.

Fortran interface:

SUBROUTINE HIPS_TRANSPOSEMATRIX(ID, IERROR)
INTS, INTENT(IN) :: ID
INTS, INTENT(OUT) :: IERROR

END SUBROUTINE HIPS_TRANSPOSEMATRIX

4.9.1.7 void Matrix_Read (INTS job, INTS ∗ t_n, INTL ∗ t_nnz, INTL ∗ ia,
INTS ∗ ja, COEF ∗ a, INTS ∗ sym_matrix, char ∗ matrix)

Read a matrix from file. This function is needed tby the hips test example in
TEST/PARALLEL/

4.10 HIPS’s constants 37

SUBROUTINE MATRIX_READ(job, t_n, t_nnz, ia, ja, a, sym_matrix, matrix) INTS
:: job INTS :: t_n INTL :: t_nnz INTL, DIMENSION(0) :: ia INTS, DIMENSION(0)
:: ja COEF, DIMENSION(0) :: a INTS :: sym_matrix CHARACTER(LEN=200) ::
matrix END SUBROUTINE MATRIX_READ

4.10 HIPS’s constants

Enumerations

• enum HIPS_STRATNUM {

HIPS_DIRECT = 0, HIPS_ILUT = 1, HIPS_ITERATIVE = 1, HIPS_HYBRID
= 2,

HIPS_BLOCK = 3 }
• enum HIPS_IPARAM {

HIPS_SYMMETRIC = 0, HIPS_VERBOSE = 1, HIPS_SCALE = 2, HIPS_-
LOCALLY = 3,

HIPS_KRYLOV_RESTART = 4, HIPS_ITMAX = 5, HIPS_FORWARD = 6,
HIPS_SCHUR_METHOD = 7,

HIPS_ITMAX_SCHUR = 8, HIPS_PARTITION_TYPE = 9, HIPS_KRYLOV_-
METHOD = 10, HIPS_DOMSIZE = 11,

HIPS_SMOOTH_ITER_RATIO = 12, HIPS_DOMNBR = 13, HIPS_-
REORDER = 14, HIPS_SCALENBR = 15,

HIPS_MASTER = 16, HIPS_COARSE_GRID = 17, HIPS_CHECK_GRAPH =
18, HIPS_CHECK_MATRIX = 19,

HIPS_DUMP_CSR = 20, HIPS_IMPROVE_PARTITION = 21, HIPS_-
TAGNBR = 22, HIPS_SHIFT_DIAG = 23,

HIPS_GRAPH_SYM = 24, HIPS_GRID_DIM = 25, HIPS_GRID_3D = 26,
HIPS_DISABLE_PRECOND = 27,

HIPS_FORTRAN_NUMBERING = 28, HIPS_DOF = 29, HIPS_PIVOTING =
30 }

• enum HIPS_RPARAM {

HIPS_PREC = 0, HIPS_DROPTOL0 = 1, HIPS_DROPTOL1 = 2, HIPS_-
DROPSCHUR = 3,

HIPS_DROPTOLE = 4, HIPS_AMALG = 5 }
• enum HIPS_RETURNS {

HIPS_SUCCESS = 1, HIPS_ERR_ALLOCATE, HIPS_ERR_IO, HIPS_ERR_-
PARAMETER,

HIPS_ERR_MATASSEMB, HIPS_ERR_RHSASSEMB, HIPS_ERR_-
PARASETUP, HIPS_ERR_CALL,

HIPS_ERR_PRECOND, HIPS_ERR_SOLVE, HIPS_ERR_KRYLOV, HIPS_-
ERR_CHECK }

4.10 HIPS’s constants 38

• enum HIPS_INFO_INT {

HIPS_INFO_NNZ = 0, HIPS_INFO_NNZ_PEAK, HIPS_INFO_DIM, HIPS_-
INFO_OUTER_ITER,

HIPS_INFO_INNER_ITER, HIPS_INFO_ITER }
• enum HIPS_INFO_REAL {

HIPS_INFO_PRECOND_TIME = 0, HIPS_INFO_SOLVE_TIME, HIPS_-
INFO_FILL, HIPS_INFO_FILL_PEAK,

HIPS_INFO_RES_NORM }
• enum HIPS_ASSEMBLY_MODE { HIPS_ASSEMBLY_RESPECT, HIPS_-

ASSEMBLY_FOOL }
• enum HIPS_ASSEMBLY_OP { HIPS_ASSEMBLY_OVW = 0, HIPS_-

ASSEMBLY_ADD }

4.10.1 Enumeration Type Documentation

4.10.1.1 enum HIPS_ASSEMBLY_MODE

Enum: HIPS_ASSEMBLY_MODE

Indicates if user can ensure that the information he is giving respects the solver distri-
bution.

HIPS_ASSEMBLY_RESPECT - User ensure he respects distribution during assem-
bly. HIPS_ASSEMBLY_FOOL - User is not sure he will respect ditribution during
assembly

Enumerator:

HIPS_ASSEMBLY_RESPECT
HIPS_ASSEMBLY_FOOL

4.10.1.2 enum HIPS_ASSEMBLY_OP

Enum: HIPS_ASSEMBLY_OP

Operations possible when a coefficient appear twice.

HIPS_ASSEMBLY_OVW - Coefficients will be overwriten during assembly. HIPS_-
ASSEMBLY_ADD - Coefficients will be added to the matrix. Do not sum overlaped
values between processors.

Enumerator:

HIPS_ASSEMBLY_OVW
HIPS_ASSEMBLY_ADD

4.10 HIPS’s constants 39

4.10.1.3 enum HIPS_INFO_INT

Enum: HIPS_INFO_INT

HIPS integer information identifiers.

Contains: HIPS_INFO_NNZ - Number of non zeros stored in the preconditioner (end
of the preconditioning step). HIPS_INFO_NNZ_PEAK - Maximum number (peak) of
non-zeros stored during preconditioning step. HIPS_INFO_DIM - Dimension of the
global matrix HIPS_INFO_OUTER_ITER, - Number of outer iterations HIPS_INFO_-
INNER_ITER, - Number of inner iterations (Schur complement) HIPS_INFO_ITER -
Number of iterations (inner for hybrid, outer for iterative)

Enumerator:

HIPS_INFO_NNZ
HIPS_INFO_NNZ_PEAK
HIPS_INFO_DIM
HIPS_INFO_OUTER_ITER
HIPS_INFO_INNER_ITER
HIPS_INFO_ITER

4.10.1.4 enum HIPS_INFO_REAL

Enum: HIPS_INFO_REAL

HIPS integer information identifiers.

Contains: HIPS_INFO_PRECOND_TIME - Preconditioning time. HIPS_INFO_-
SOLVE_TIME - Solving time (total time in the preconditioned Krylov method).
HIPS_INFO_FILL - Fill-in (ratio with the number of non-zeros in the initial matrix)
in the preconditioner. HIPS_INFO_FILL_PEAK - Maximum fill-in (ratio with the
number of non-zeros in the initial matrix) during the preconditioning step. HIPS_-
INFO_RES_NORM - The relative residual norm achieved in the last resolution

Enumerator:

HIPS_INFO_PRECOND_TIME
HIPS_INFO_SOLVE_TIME
HIPS_INFO_FILL
HIPS_INFO_FILL_PEAK
HIPS_INFO_RES_NORM

4.10 HIPS’s constants 40

4.10.1.5 enum HIPS_IPARAM

Enum: HIPS_IPARAM

Hips integer parameters identifiers.

Solvers may implement is own list of parameters. Contains: HIPS_SYMMETRIC -
[0,1] (default 0) this means that the matrix is symmetric and that you want to use the
symmetric algorithms of HIPS (it saves half the computation and memory). { In this
case, only the upper triangular part of the CSR matrix given as input to HIPS functions
are considered}. HIPS_VERBOSE - [0-5] (default 2) level of informations printed in
HIPS functions (0 the less information)

HIPS_SCALE - HIPS developers reserved. HIPS_LOCALLY - [0-] number of level
that use the HIPS locally consistent fill-in pattern. This option defines the fill-in pattern
(structurally and not numerically as in ILUT In general one will use 0 (no fill-in outside
the original diagonal block pattern) or a high value (100 for example) to allow the fill-
in anywhere in the Schur complement pattern. HIPS_KRYLOV_RESTART - restart
parameter of GMRES. HIPS_ITMAX - maximum number of iteration allowed in the
krylov method. In the full "ITERATIVE" mode (see ∗HIPS_STRATNUM∗), you can
set "-1" to make a simple forward/backward substitution (for example if you want to
use HIPS as a preconditioner in your method). HIPS_FORWARD - HIPS developers
reserved. HIPS_SCHUR_METHOD - HIPS developers reserved. HIPS_ITMAX_-
SCHUR - HIPS_PARTITION_TYPE - HIPS developers reserved. HIPS_KRYLOV_-
METHOD - 0 Preconditioned GMRES, =1 Preconditioned Conjugate gradient. HIPS_-
DOMSIZE - HIPS_SMOOTH_ITER_RATIO - HIPS developers reserved. HIPS_-
DOMNBR - HIPS_REORDER - 0 No reordering inside the subdomain to minimize
fill-in, =1 reordering inside the subdomain to minimize fill-in. This option is only used
in the recursive ITERATIVE preconditioneur. HIPS_SCALENBR - [1-] this value is
used to set the number of time the normalisation is applied to the matrix. One should
set a value 1 only in special case. HIPS_MASTER - HIPS pretreament (reodering,
partitionning...) is done in sequential. The master processor is in charge of these com-
putation. By default it is the processor 0 but you can change this with this option.
HIPS_COARSE_GRID - HIPS developers reserved. HIPS_CHECK_GRAPH - [0, 1]
(default 1) : set this option to 1 if you want to check (and repair) the matrix adjacency
graph. This option ensures the graph is symmetric and that there is no double edge.
HIPS_CHECK_MATRIX - =[0, 1] (default 1) : set this option to 1 if you want to check
(and repair) the coefficients matrix. This option check if there are coefficient with the
same indices and sum them up in this case. HIPS_DUMP_CSR - HIPS developers re-
served. HIPS_IMPROVE_PARTITION - HIPS developers reserved. HIPS_TAGNBR
- HIPS developers reserved. HIPS_SHIFT_DIAG - HIPS developers reserved. HIPS_-
GRAPH_SYM - =[0, 1] (default 1) : set this option to 0, if you are sure that the graph
you give to HIPS is symmetric ; this disable the graph symmetrization.

HIPS_GRID_DIM - HIPS developers reserved. HIPS_GRID_3D - HIPS developers
reserved. HIPS_DISABLE_PRECOND - [0, 1] if set to 1 then when new matrix
coefficient are entered the preconditioner is not recalculated in HIPS. Nevertheless,
this option is taken into account only if a preconditioner has already been computed.

4.10 HIPS’s constants 41

HIPS_FORTRAN_NUMBERING - [0, 1] (default 1) : numbering in indexes array will
start at 0 or 1. This options modify the default numbering for the inputs and returns in
all HIPS’s functions. HIPS_DOF - [1-] (default 1) : number of unknowns per node in
the matrix non-zero pattern graph. Usually, one needs this function when a node repre-
sents several degree of freedom. That is to say : any entry (i, j) of the graph represents
a dense block of (dof,dof) non null coefficients in the matrix. HIPS_PIVOTING -[0, 1]
(default 0) : disable or enable column pivoting in ILUT (only for unsymmetric matrix).
This option is not yet fully implemented in parallel.

Enumerator:

HIPS_SYMMETRIC
HIPS_VERBOSE
HIPS_SCALE
HIPS_LOCALLY
HIPS_KRYLOV_RESTART
HIPS_ITMAX
HIPS_FORWARD
HIPS_SCHUR_METHOD
HIPS_ITMAX_SCHUR
HIPS_PARTITION_TYPE
HIPS_KRYLOV_METHOD
HIPS_DOMSIZE
HIPS_SMOOTH_ITER_RATIO
HIPS_DOMNBR
HIPS_REORDER
HIPS_SCALENBR
HIPS_MASTER
HIPS_COARSE_GRID
HIPS_CHECK_GRAPH
HIPS_CHECK_MATRIX
HIPS_DUMP_CSR
HIPS_IMPROVE_PARTITION
HIPS_TAGNBR
HIPS_SHIFT_DIAG
HIPS_GRAPH_SYM
HIPS_GRID_DIM
HIPS_GRID_3D

4.10 HIPS’s constants 42

HIPS_DISABLE_PRECOND
HIPS_FORTRAN_NUMBERING
HIPS_DOF
HIPS_PIVOTING

4.10.1.6 enum HIPS_RETURNS

Enum: HIPS_RETURNS

HIPS error identifiers. These are the list of possible errors returned by HIPS functions.
You can call HIPS_PrintError to print the information on a specific error number. You
can call HIPS_ExitOnError to print the information on a specific error number and stop
the program.

Contains: HIPS_ERR_ALLOCATE , HIPS_ERR_IO , HIPS_ERR_PARAMETER,
HIPS_ERR_MATASSEMB, HIPS_ERR_RHSASSEMB, HIPS_ERR_PARASETUP,
HIPS_ERR_CALL, HIPS_ERR_PRECOND, HIPS_ERR_SOLVE, HIPS_ERR_-
KRYLOV, HIPS_ERR_CHECK,

Enumerator:

HIPS_SUCCESS
HIPS_ERR_ALLOCATE
HIPS_ERR_IO
HIPS_ERR_PARAMETER
HIPS_ERR_MATASSEMB
HIPS_ERR_RHSASSEMB
HIPS_ERR_PARASETUP
HIPS_ERR_CALL
HIPS_ERR_PRECOND
HIPS_ERR_SOLVE
HIPS_ERR_KRYLOV
HIPS_ERR_CHECK

4.10.1.7 enum HIPS_RPARAM

Enum: HIPS_RPARAM

Hips real parameters identifiers.

Solvers may implement is own list of parameters.

Contains: HIPS_PREC - Wanted norm error at the end of solve. HIPS_DROPTOL0
- HIPS_DROPTOL1 - HIPS_DROPTOLSCHUR - HIPS_DROPTOLE - HIPS_-
AMALG -

5 Frequently Asked Questions 43

Enumerator:

HIPS_PREC
HIPS_DROPTOL0
HIPS_DROPTOL1
HIPS_DROPSCHUR
HIPS_DROPTOLE
HIPS_AMALG

4.10.1.8 enum HIPS_STRATNUM

Enum: HIPS_STRATNUM

Hips strategy identifiers.

Solvers may implement is own list of parameters.

Contains: HIPS_ITERATIVE - Use the multistage ILUT precondionner HIPS_-
HYBRID - Use the hybrid direct/iterative solver

Enumerator:

HIPS_DIRECT
HIPS_ILUT
HIPS_ITERATIVE
HIPS_HYBRID
HIPS_BLOCK

5 Frequently Asked Questions

• Can I use my own data partition in HIPS ?
You can find an example in TESTS/PARALLEL : testHIPS3.c or
testHIPS3-Fortran.f90.

• How to change the matrix and solve the system without recomputing the
preconditioner ?
Set the parameter HIPS_DISABLE_PRECOND to 0 with the function
HIPS_SetOptionINT: this allows you to keep the preconditioner unchanged
even if you change the matrix.

• How to use DOF > 1 (degree of freedom) ?
Set the parameter HIPS_DOF (degree of freedom) to a value > 1 with the func-
tion HIPS_SetOptionINT.

5 Frequently Asked Questions 44

• How to save the preprocessing step ?
You can find an example in TESTS/PARALLEL : testHIPS-Save.c and
testHIPS-Load.c

• What is the best graph partitioner library to link with ? (METIS or SCOTCH)
Well, the main SCOTCH developper is in the next office so let say SCOTCH.

• What is the difference between nnzP and peak ?
nnzP is the size, in term of non-zero of the preconditioner but HIPS needs tem-
porary additional memory during the build of the preconditioner. peak is the
memory peak reach during this step. Using numerical threshold (parameter #10#
in Input) you can in general reduce a lot this peak.

• Why the HIPS logo is an orange spot ?
That is a good question.

	Overview
	Installation
	Pre-requirements :
	Installation procedure :

	How to run the hips test program
	Input parameters of the test program
	Contents of HIPS directory

	HIPS's Library Interface
	Solver setup functions
	Function Documentation
	HIPS_Initialize
	HIPS_SetDefaultOptions
	HIPS_SetOptionINT
	HIPS_SetOptionREAL

	Graph setup function
	Function Documentation
	HIPS_GraphBegin
	HIPS_GraphDistrCSR
	HIPS_GraphEdge
	HIPS_GraphEnd
	HIPS_GraphGlobalCSC
	HIPS_GraphGlobalCSR
	HIPS_GraphGlobalIJV

	IO functions
	Detailed Description
	Function Documentation
	HIPS_LocalMatriceLoad
	HIPS_LocalMatricesSave
	HIPS_SetupLoad
	HIPS_SetupSave

	Get the internal HIPS distribution
	Function Documentation
	HIPS_AssemblyBegin
	HIPS_AssemblyEnd
	HIPS_AssemblySetBlockValues
	HIPS_AssemblySetNodeValues
	HIPS_AssemblySetValue
	HIPS_FreePrecond
	HIPS_GetLocalNodeList
	HIPS_GetLocalNodeNbr
	HIPS_GetLocalUnknownList
	HIPS_GetLocalUnknownNbr
	HIPS_MatrixDistrCSR
	HIPS_MatrixGlobalCSC
	HIPS_MatrixGlobalCSR
	HIPS_MatrixGlobalIJV
	HIPS_MatrixLocalCSR
	HIPS_MatrixReset
	HIPS_SetPartition
	HIPS_SetSubmatrixCoef

	Fill the right-hand-side member
	Function Documentation
	HIPS_RHSReset
	HIPS_SetGlobalRHS
	HIPS_SetLocalRHS
	HIPS_SetRHS

	Get the solution
	Function Documentation
	HIPS_GetGlobalSolution
	HIPS_GetLocalSolution
	HIPS_GetSolution

	Clean up
	Function Documentation
	HIPS_Clean
	HIPS_Finalize

	Get HIPS's Infos
	Function Documentation
	HIPS_ExitOnError
	HIPS_GetInfoINT
	HIPS_GetInfoREAL
	HIPS_PrintError

	HIPS advanced functions
	Function Documentation
	HIPS_CheckSolution
	HIPS_GetSubmatrix
	HIPS_MatrixVectorProduct
	HIPS_ReadOptionsFromFile
	HIPS_SetCommunicator
	HIPS_TransposeMatrix
	Matrix_Read

	HIPS's constants
	Enumeration Type Documentation
	HIPS_ASSEMBLY_MODE
	HIPS_ASSEMBLY_OP
	HIPS_INFO_INT
	HIPS_INFO_REAL
	HIPS_IPARAM
	HIPS_RETURNS
	HIPS_RPARAM
	HIPS_STRATNUM

	Frequently Asked Questions

